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ABSTRACT 

This study investigated the potential of unmanned aerial 
vehicle (UAV) based multispectral imagery (MI) to predict 
the leaf nitrogen (N) content of sugarcane (Saccharum 
officinarum L.). MI of canopy cover of two sugarcane 
varieties (Co 775 and SL 96 128) applied with different 
doses of N (0 – 550 kg/ha) were captured at 4½ months 
after planting. These images were used to calculate 10 
different vegetation indices (VIs). Five machine learning 
(ML) models were tested for their potential to predict leaf
N status using the most appropriate VIs.  The correlation
analysis showed that DVI (Difference Vegetation Index)
was the most powerful VI for the prediction of leaf N (r =
0.81), followed by the RVI (Ratio Vegetation Index) and
NDVI (Normalized Difference Vegetation Index) (R2= 0.78
and 0.77, respectively). A threshold correlation (r > 0.6)
was applied to select predictive variables for ML models
and performance was evaluated using a validation data set
of leaf N content. Individual variety testing revealed that
PLSR (Partial Least Squares Regression) and SVR (Support
Vector Regression) models as the best prediction models
with the highest Coefficient of determination (R2>0.72)
and the lowest Root Mean Square Error values
(RMSE<0.11). When both variety data were pooled, RF
(Random Forest) demonstrated the highest predictive
performance on the validation dataset, with an R2 value of
0.66 with a RMSE value of 0.12. Generally, the prediction
accuracy of models was less when data from both varieties
were pooled. This study postulated the potential for the
fusion of UAV MI and ML approaches to predict leaf N
states and the importance of developing varietal-specific
prediction models for the sugarcane vegetation.

https://orcid.org/0000-0002-1825-0097
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INTRODUCTION 
 
Plant nutrient analysis is essential for 
determining the correct fertilizer requirement 
of crops, including sugarcane, particularly 
requirements of nitrogen, phosphorous, and 
potassium, which are required in higher 
quantities. Many studies have shown spatial 
variability of the nutrient status in sugarcane 
(Dongare et al., 2022; Salgado et al., 2020; 
Silva et al., 2020). Several factors have been 
linked with this spatial variability including 
sugarcane variety (Sumesh et al., 2021), water 
regime (Li et al., 2022), soil characteristics 
(Ortuani et al., 2019), management practices, 
and agro-climate. Site-specific fertilizer 
recommendations attempt to address this 
variability and optimize nutrient use 
efficiency (Nawar et al., 2017) by adjusting the 
application rate, time, and type of fertilizers 
such as organic and chemical fertilizers. 
However, studies showed that the type of 
fertilizer has variable effects on nutrient 
availability in soil and nutrient absorption in 
sugarcane cultivation. Hence, the 
determination of plant nutrient availability is 
critical to maintain an adequate nutrient 
supply to achieve optimum yield in sugarcane 
cultivation when using organic fertilizers as an 
option in site-specific fertilizer 
recommendations. In this context, plant 
nutrient analysis plays an important role in 
sustainable nutrient management for organic 
sugarcane cultivation. Accurate sugarcane 
plant nutrient analysis requires to obtain leaf 
samples and subsequent preparation of 
nutrient maps depending on the area of 
cultivation. However, the applicability of this 
approach in large sugarcane cultivations is 
limited due to cost and time constraints 
(Sanches et al., 2021). 
 
Precision agriculture technologies have 
shown promise in gathering big data in 
agricultural systems in a cost and time-
efficient manner (Carrer et al., 2022). Latest 
developments in Unmanned Aerial Vehicles 
(UAVs) and multispectral camera systems 
have opened new opportunities to gather 
accurate bio-physical data much more 
efficiently. This technology has been 
successfully used for making sugarcane yield 
predictions (Chea et al., 2020), disease 
detection (Narmilan et al., 2022), and nutrient 

status (Shendryk et al., 2020) prediction. The 
ability to capture multispectral images in 
lower altitudes with higher resolutions makes 
UAVs an excellent tool for replacing costly and 
low-resolution satellite images (Barbosa et al., 
2022).   
 
Reflections of sugarcane plant canopy can be 
captured using UAV-based multispectral 
imaging and different vegetative indices (VIs) 
are generated by using different ratios of 
multispectral bands. Several studies 
concluded that these VIs have a higher 
correlation with the crop attributes of the 
sugarcane plant.  Narmilan, et al., (2022) 
studied the relationship between sugarcane 
leaf chlorophyll content and different 
vegetative indices derived from UAV 
multispectral images. Rahman et al., (2020) 
performed time-series data analysis using two 
different satellite data integration for the 
prediction of sugarcane crop yield at block 
level. Lisboa et al., (2018) found that NDVI 
effectively predicts the sugarcane yield and 
leaf nutrient content under different straw 
removal rates.  
 
However, with the development of new 
remote sensing technologies, processing 
methods, and higher computing power, the 
estimation of crop nutrient status can be 
improved. Machine Learning (ML) algorithms 
have recently been applied to various 
agricultural remote-sensing techniques to 
monitor and predict sugarcane crop 
parameters (Benos et al., 2021). ML modeling 
creates an empirical relationship between 
independent and dependent variables without 
relying on specific crop attributes (Benos et al., 
2021). Random Forest (RF), Partial Least 
Square Regression (PLSR), Multiple Linear 
Regression (MLR), Extreme Gradient Boosting 
(XGB), Support Vector Regression (SVR) and 
other machine learning algorithms are used 
for processing of UAV-based multispectral 
images (Benos et al., 2021; Ray, 2019). Xu et 
al., (2020) used different machine learning 
models to estimate sugarcane yield using UAV-
LIDAR data and Canata et al., (2021) 
concluded that the RF regression method 
enabled the development of yield models for 
sugarcane cultivations than MLR at higher 
accuracy.  
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However, a limited number of studies have 
been conducted to predict sugarcane leaf 
nitrogen using machine learning modeling 
especially with the application of organic 
fertilizers. Hence, the main objective of the 
study was to assess the potential of the UAV-
based multispectral imaging and ML 
algorithms to predict the status of sugarcane 
leaf nitrogen at the vegetative stage of the crop 
when organic fertilizers are used to provide 
the N requirement of the plants. 
 
MATERIALS AND METHODS 
 
Experimental field trial  
 
The research study was carried out at the 
research farm of the Sugarcane Research 
Institute, Uda Walawe located in the low 
country dry zone of Sri Lanka. The 
experimental site (0.5 ha, central coordinates 
of 6°24' N Latitude and 80°49' E Longitude) 
was selected considering the land slope, flight 
suitability, and previous cropping history, 
which had more than two years of fallow 
period (Figure 1). 
 
A research field trial was conducted during the 
growing season of 2020/2021 to assess the 
impact of various organic fertilizer rates on 
the growth and development of two major 
sugarcane varieties: SL 96 128 and Co 775. 
These varieties are widely cultivated in Sri 
Lanka and Co 775 is considered as one of the 
standard varieties for the breeding program of 
Sugarcane Research Institute (Sumedha et al., 
2021).  

The trial consisted of 64 research plots, each 
containing 5 rows of sugarcane plants (row 
spacing = 1.21 m) with a length of 7 meters, 
and four replicated plots for each of the seven 
treatments designed to provide varying 
amounts of nitrogen to the sugarcane plants. 
Commercially available organic fertilizers 
(product of Gal-Oya plantation [pvt] Limited) 
with around1% available nitrogen content 
made from sugarcane industry by-products 
(filter mud and Vinasse) was used as the 
nitrogen source for this study. Total organic 
fertilizer requirement for each plot was 
determined based on the supply of available 
nitrogen amount by the organic fertilizers.  
Table 1 shows the specific amounts of nitrogen 
provided under each treatment.  
 
UAV survey 
 
Sugarcane leaf sampling and UAV flight 
mission was carried out at 4½ months after 
planting representing the latter stages of the 
vegetative stage.Multispectral images were 
captured in the selected research field trial 
using a DJI P4 multispectral UAV. The DJI P4 
UAV has a takeoff weight of 1487 g and an 
average flight time of 27 minutes. The DJI P4 
multispectral imaging system is equipped 
with six cameras, including one RGB camera 
that produces images in JPEG file format and 
five other cameras that capture different 
multispectral images in TIFF file format. The 
multispectral cameras capture images in five 
imaging bands (Table 2). 

 

Figure 1 Experiment site 
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Table 1. Treatments of the field trial 
Treatments Nitrogen rate 

T1 550 kg/ha 

T2 140 kg/ha 

T3 40 kg/ha 

T4 20 kg/ha 

T5 10 kg/ha 

T6 5 kg/ha 

T7 0 kg/ha 

 
Table 2. Spectral band information for the DJI P4 Multispectral UAV 
 

Image band 
Central wavelength 

(nm) 
Wavelength width 

(nm) 

Blue 450 32 

Green 560 32 

Red 650 32 

Red-edge 730 32 

Near-infrared 840 32 

 

Figure 2 Demarcated 1 m2 region of interest for leaf sample collection 
 
Table 3 UAV flight mission parameters 
 
 
 
 
 
 
 
 
To enhance the accuracy of the flight mission, 
a D-RTK 2 (Real-time kinematics) mobile 
station was connected to the UAV. This 
technology allows for the UAV to be positioned 
with high precision without the need for an 
internet connection. Captured images were 
stored in the UAV hardware and downloaded 
for post-processing (Glavačević et al., 2023; 
Rabah et al., 2018). During the UAV flight 

mission for multispectral image capture, a 
clear day with a bright sky was selected 
between 9:30 a.m. and 11:30 a.m. The UAV 
was flown at a constant height of 35 m, and the 
flight height was maintained using the 
Barometer sensor in the UAV. Table 3 provides 
an overview of the parameters used in the UAV 
flight mission. 
 

Parameter Value 

Height 35 m 

Ground sampling distance (GSD) 1.42 cm/px 

Speed 6 ms-1 

Overlap Front – 80 %, Side – 70 % 

Time 9.30 am to 11.30 

1 m x 1 m Section 
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Leaf analysis of N content 
 
Leaf samples were collected on the same day 
as the UAV flight mission. The research field 
trial was divided into 112 regions of interest 
(ROI) of 1 m2 area, covering the middle three 
rows of each plot (Figure 2). Central GPS 
locations were obtained for each ROI using a 
Garmin Montana 700i™ GPS receiver. Four top 
visible dewlap (TVD) leaves were collected 
from each 1 m2 section and combined to create 
a composite sample. Total of 112 leaf samples 
were tagged separately, placed in sealed 
polythene bags, and transported to the 
laboratory for further analysis. 
 
The leaf samples were processed in the 
laboratory for analysis of total leaf nitrogen. 
The leaves were folded at their midpoint and a 
section of approximately 20 cm in length was 
cut from the folded end, taken from the middle 
portion of the leaf. The midrib was removed 
and the leaf sections were dried in an oven at 
70 °C for 48 hours by following the method 
outlined by Calcino et al., (2000). The dried 
leaf samples were then ground using a leaf 
grinding machine and passed through a 1 mm 
mesh sieve. The ground leaf samples were 
stored in airtight containers for subsequent 
chemical analysis. 
 
One hundred and twelve leaf samples were 
prepared for the analysis of total leaf nitrogen 
using the standard colorimetric method as 
described by Okalebo et al., (2002) and 
analyzed at the laboratory of the Crop 
Nutrition Division at the Sugarcane Research 
Institute in Sri Lanka. 
 
Multispectral image analysis 
 
Multispectral image map development was 
performed using Agisoft Metashape (Version 
1.6.6; Agisoft LLC, Petersburg, Russia) 
mapping software. All bands were processed 
into individual maps using Agisoft Metashape 
(version: 1.8.5) and imported into ArcGIS 
software (version: 10.8). The reflectance 
values in the Red, Green, Blue, Red-Edge, and 
Near-Infrared band maps were utilized to 
create vegetation indices. Ten (10) distinct 
vegetation indices were produced using the 
raster calculator function in the ArcGIS 
software (version: 10.5), as presented in Table 

4. The Soil-adjusted Vegetation Index (SAVI) 
was applied to remove soil and background 
shadow and isolate the sugarcane canopy for 
the prediction of sugarcane leaf nitrogen 
content, following the methodology proposed 
by Huete, (1988). 
 

Soil Adjusted Vegetation Index 

=  
(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅 + 𝐿)
 ×  (1 + 𝐿) 

 
where, NIR, R and L are near-infrared, red 
band and 50% vegetation cover, respectively. 
GPS locations were imported into the ArcGIS 
and 1 m2 ROIs shape files were created, using 
GPS location as the middle point of the 1 m2 
shape file. Each vegetation index map was 
extracted into 112 ROIs and average 
vegetation indices values of each ROI were 
taken into further analysis. 
 
Statistical analysis and machine learning 
modeling 
 
To investigate the relationship between UAV-
derived vegetation indices and sugarcane total 
leaf nitrogen content, statistical analysis was 
performed using machine learning modeling 
in Python (version 3.8.10). Tested machine 
learning approaches included MLR, PLSR, RF, 
SVR, and XGB. To identify the most significant 
vegetation indices, Pearson's correlation 
coefficient (r) was applied. Five machine 
learning algorithms were employed after 
feature selection. The suitability of each 
algorithm was evaluated by calculating the 
root mean square error (RMSE) and 
coefficient of determination (R2) for datasets 
that were randomly divided into 80% training 
sets (n=90) and 20% validation sets (n=22). 
 
 

𝑅𝑀𝑆𝐸 = √∑
((𝑦𝑖̂ −  𝑦𝑖)2)

𝑛

𝑛

𝑖=1
 

 
where, 𝑦̂1  and 𝑦1 are the predicted and 
observed N content of ith sample and n is the 
total number of samples. Thus, lower values of 
RMSE show more accurate predictions of a 
model.  On the other hand, higher R2 values 
show more accurate predictions.  
 



Kumarasiri et al. (2024) Tropical Agricultural Research, 35(1): 11-23  | 16 

 

 

Table 4 Different vegetation indices used in this study  
 

No Vegetation Index Formula Purpose 
01 Normalized Difference 

Vegetation Index (NDVI) 
𝑁𝐷𝑉𝐼 =  

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

Estimation of vegetation 
biomass  
(Singh et al., 2006) 

02 Green Normalized 
Difference Vegetation 
Index (GNDVI) 

𝐺𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 + 𝐺
 

Estimation of vegetation 
fraction 
(Rahman et al., 2020) 

03 Leaf Chlorophyll Index 
(LCI) 

𝐿𝐶𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑 
 

Estimation of chlorophyll 
content (Narmilan et al., 2022) 

04 Difference Vegetation 
Index (DVI) 

DVI = NIR - R Comparison of different 
reflectance indices for 
vegetation analysis (Scher et al., 
2020) 

05 Ratio Vegetation Index 
(RVI) 

𝑅𝑉𝐼 =  
𝑁𝐼𝑅

𝑅
 

Sugar yield parameter detection 
(Chea et al., 2020) 

06 Green Difference 
Vegetation Index (GDVI) 

GDVI = NIR - G Estimate productivity and 
assess phylogenetic heritability 
(Kumar et al., 2018) 

07 Normalized Difference Red 
Edge Index (NDRE) 

𝑁𝐷𝑅𝐸 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒
 

Detect differences in vegetation 
and chlorophyll content 
(Boiarskii, 2019) 

08 Green Chlorophyll Index 
(GCI) 

𝐺𝐶𝐼 =  
𝑁𝐼𝑅

𝑅
− 1 

Estimation of leaf area index 
and green leaf biomass 
(Haboudane, 2004) 

09 Normalized Green Red 
Difference Index (NGRDI) 

𝑁𝐺𝑅𝐷𝐼 =  
𝐺 − 𝑅

𝐺 + 𝑅
 

Monitoring of crop biomass 
(Gitelson et al., 2003) 

10 Enhanced Normalized 
Difference Vegetation 
Index (ENDVI) 

𝐸𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 + 𝐺) − (2 × 𝐵)

(𝑁𝐼𝑅 + 𝐺) + (2 × 𝐵)
 

Mapping of sugarcane to assess 
phylogenetic heritability (Scher 
et al., 2020) 

 
The experimental process is shown in Figure 3.  
 

 
Figure 3 Summary of the methodology used in the prediction of leaf nitrogen content of 
sugarcane  
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RESULTS AND DISCUSSION 
 
Correlation between vegetation indices 
and leaf nitrogen content  
 
Table 5 shows the descriptive statistics for 
different VIs used in this study. LCI and NGRDI 
showed the highest variability (CV>75 %) and 
NDRE showed the lowest variability (CV<10 
%).  However, many VIs showed higher CV 
values (>30%) since the treatments used in 
this study supplied a range of nitrogen 
nutrient between 0 kg/ha to 550 kg/ha. 
Treatment variations were properly reflected 
in the VI results.  
 
Several studies concluded that VI-derived CV 
has a strong correlation with sugarcane plant 
variations and the relationships were used in 
decision-making in sugarcane cultivation. 
Chanda et al., (2018) reported that CVs from 
the red-edge band had consistently negative 
linear relationships (p < 0.001), the strongest 
being at the early tillering stage (R2= 0.61–
0.73) which coincides with our findings. Raun 
et al., (2005) incorporated CV values derived 
from optical sensor readings (VIs) to adjust 

nitrogen recommendations for sugarcane 
cultivation. Arnall et al., (2006) analyzed 
midseason NDVI changes and harvested 
winter wheat yield in response to applied N, 
using NDVI-derived CV. Results indicated an 
improved linear relationship, with R2 values 
increasing from 0.17 to 0.37. 
 
According to the literature around 1.8 mg/kg 
to 2.5 mg/kg leaf nitrogen contents are 
categorized as optimum for sugarcane 
cultivation (Barros et al., 2022). The values 
represented in table 06 suggest T1 and T2 
plots received optimum nitrogen supply, 
whereas T3 to T7 showed nitrogen stress. 
Descriptive statistics of leaf nitrogen content 
showed a good variability among different 
treatment suggesting its suitability for proper 
model development using machine learning 
models (Narmilan et al., 2022; You et al., 
2023). 
 
The Pearson`s Correlation Coefficients (r) 
showing the relationship between different 
vegetation indices and sugarcane leaf nitrogen 
content are shown in Figure 4 
 

 
Table 5. Descriptive statistics of different vegetation indices  
 

VIs Minimum Maximum Range Mean CV (%) 

NDVI 0.14 0.67 0.53 0.42 31 

GNDVI 0.05 0.54 0.49 0.31 29 

LCI -0.27 0.33 0.60 0.10 100 

DVI 29.15 145.10 115.95 89.03 31 

RVI 1.33 5.10 3.78 2.69 33 

GDVI 10.26 122.33 112.07 71.16 33 

NDRE -0.18 0.27 0.45 0.80 9 

GCI 0.10 2.31 2.21 0.97 46 

NGRDI -0.10 0.34 0.43 0.13 77 

ENDVI 0.02 497.45 0.34 0.37 19 

 
Table 6. Descriptive statistics of leaf nitrogen content in different treatments and varieties  
 

SL 96 128 Co 775 
Treatment Mean SD SE Treatment Mean SD SE 

T1 1.61 0.17 0.06 T1 1.79 0.29 0.09 
T2 1.58 0.14 0.05 T2 1.73 0.34 0.12 
T3 1.52 0.16 0.05 T3 1.58 0.28 0.10 
T4 1.51 0.21 0.07 T4 1.56 0.15 0.05 
T5 1.39 0.19 0.06 T5 1.54 0.26 0.10 
T6 1.36 0.10 0.04 T6 1.52 0.23 0.08 
T7 1.27 0.09 0.03 T7 1.44 0.29 0.10 

*All the values are in mg/kg 
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Figure 4 Correlation matrix for different vegetation indices and sugarcane leaf nitrogen 
contents 
 
The DVI had the highest correlation (r= 0.81) 
with the leaf nitrogen level. The RVI and NDVI 
also had comparable high correlations (r = 
0.78 and 0.77, respectively). This was further 
explained by maps of these VI’s. 
 
Vegetation reflect more spectrum of light near 
the NIR and Red region (Reisi Gahrouei et al., 
2020; Yu et al., 2021) compared to other 
spectrum regions. Corti, (2016) observed that 
both normal and nitrogen-stressed crop 
canopies had greater reflectance (0.6) of 
electromagnetic radiation spectrum between 
750 to 1000 nm region (NIR). Also, Scotford & 
Miller, (2005) indicate that the “Red-Edge” (at 
nearly 700 nm) is the narrow portion of the 
spectrum between R and NIR regions where 
vegetation uniquely causes reflectance to 
spike because R light is mostly absorbed by 
chlorophyll and NIR radiation is reflected.  
 
The amount of reflections of these spectra is 
influenced by the chlorophyll content, leaf 
structure, presence of water, and chemical 
composition of the leaf canopy Hence 
vegetative indices derived from NIR and Red 
spectrum bands are suitable for the detection 
of the healthiness of the vegetation (Figure 5). 
 
Prediction of sugarcane leaf nitrogen 
 
Machine learning prediction algorithms were 
applied separately (separate analysis) to each 
sugarcane variety and to both varieties 
together (pooled analysis). Table 7 shows the 

model strength and prediction accuracies of 
different machine learning models applied for 
two varieties and Table 8 shows both varieties 
together.  
 
Values of R2 and RMSE of training data sets for 
both varieties of SL 96 128 and Co 775 
revealed the most accurate predictions by RF 
and XGB models. However, high accuracies 
revealed for training data sets are not 
adequate to choose the best ML-based models 
due to their inherent nature of optimizing 
predictions (over fitting) to suit the training 
data set. Thus, many researchers have 
suggested using independent set data to 
choose the best prediction models.   
Interestingly, the validation of models using 
an independent validation data set revealed 
that the PLSR and SVR models as the best 
models resulted in the highest R2 (>0.72) and 
the lowest RMSE values (<0.11). Studies 
conducted to predict sugarcane leaf nitrogen 
content using statistical and machine learning 
models had similar results. Barros et al., 
(2022) concluded that hyperspectral data to 
predict leaf nitrogen content in sugarcane 
with wavelengths were best correlated with 
leaf nitrogen selected using partial least 
square regression. Zheng et al., (2018) used 
PLSR mode and got better estimations of 
efficiency of the foliar N content prediction 
with lower RMSE and higher R2 values. 
However, it should be noted that all prediction 
models resulted in accurate predictions of leaf 
N concentrations. 
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Figure 5 Maps of DVI, RVI, and NDVI pertaining to experimental plots supplied with 
different quantities of nitrogen 
 
 
Table 7: Results of different ML models to predict leaf nitrogen in SL 96 128  

 
 
 
Table 8 Results of different ML models to predict leaf nitrogen in both sugarcanevarieties 

ML 
model 

R2 RMSE 

Training Validation Training Validation 

MLR 0.70 0.54 0.11 0.13 

PLSR 0.68 0.54 0.12 0.13 

RF 0.93 0.66 0.05 0.12 

SVR 0.69 0.53 0.12 0.13 

XGB 0.99 0.47 0.01 0.14 

 
 

 
 

ML 
model 

SL 96 128 Co 775 

R2 RMSE R2 RMSE 

Training Validation Training Validation Training Validation Training Validation 

MLR 0.74 0.61 0.10 0.13 0.75 0.68 0.10 0.13 

PLSR 0.68 0.72 0.11 0.11 0.65 0.82 0.12 0.08 

RF 0.94 0.66 0.05 0.12 0.94 0.65 0.05 0.11 

SVR 0.70 0.70 0.11 0.11 0.65 0.85 0.12 0.08 

XGB 0.99 0.36 0.01 0.16 0.99 -0.01 0.01 0.22 
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CONCLUSIONS 
 

The objective of the study was to assess the 
potential of the UAV-based multispectral 
imaging and ML algorithms to predict the 
status of sugarcane leaf nitrogen at the 
vegetative stage of the crop when organic 
fertilizer is used to provide the N requirement 
of the plants. The findings showed the fusion 
of UAV-based multispectral imaging and ML 
algorithms leads to the prediction of leaf 
nitrogen status at a high accuracy even with 
the application of organic fertilizers. The PLSR, 
RF and SVM models gave higher predictive 
performances in both training and testing 
datasets. Overall, RF machine learning model 
performed well in both separate and pooled 
analysis and gave higher predictive accuracy. 
However, importantly the findings revealed 
that the predictive power of different machine 
learning approaches is dependent on the 
sugarcane variety. Therefore, the selection of 
an appropriate ML-based prediction model 
should take into account the distinct 
characteristics and requirements of the 
sugarcane variety being investigated. Further 
research is recommended to validate the 
performance of these models in other 
sugarcane varieties at different growth stages 
under different environmental conditions. 
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